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Abstract. We study the Schur process with two free boundaries, a generalization of the
original Schur process of Okounkov and Reshetikhin. We compute its correlation func-
tions for arbitrary specializations and apply the result to the asymptotics of symmetric
last passage percolation models, symmetric plane partitions and plane overpartitions.

Résumé. Nous étudions le processus de Schur avec deux bords libres, une généralisa-
tion du processus de Schur original de Okounkov et Reshetikhin. Nous calculons ses
fonctions de corrélation pour des spécialisations arbitraires et utilisons le résultat pour
analyser asymptotiquement les modèles de percolation de dernier passage symétrique,
de partitions planes symétriques et de surpartitions planes.

Keywords: Schur process, free boundaries, pfaffian point process, plane partitions, last
passage percolation

1 Introduction and basic definitions

In this paper, we introduce and study the Schur process with free boundaries, which is a
generalization of the Schur process introduced by Okounkov and Reshetikhin [13], and
which is a random sequence of integer partitions whose probability is given as a product
of Schur functions.

Recall that an (integer) partition λ is a nonincreasing sequence of nonnegative integers
λ1 ≥ λ2 ≥ · · · which vanishes eventually. We denote by |λ| = ∑i≥1 λi the size of λ. We
write µ ⊂ λ if λ and µ are two partitions such that λi ≥ µi for all i. The free boundary
Schur process of length N is a measure over the set of sequences of partitions of the form

µ(0) ⊂ λ(1) ⊃ µ(1) ⊂ · · · ⊃ µ(N−1) ⊂ λ(N) ⊃ µ(N) (1.1)
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which assigns to any such sequence (~λ,~µ) an (unnormalized) weight

W(~λ,~µ) := u|µ
(0)|v|µ

(N)|
N

∏
k=1

(
sλ(k)/µ(k−1)

(
ρ+k
)

sλ(k)/µ(k)

(
ρ−k
))

. (1.2)

Here u, v are complex parameters, sλ/µ is the skew Schur function associated with the
skew shape λ/µ and the ρ±k , k = 1, . . . , N are complex specializations of the ring Λ
of symmetric functions. We refer the reader to the standard textbooks [11, Chapter 1]
and [14, Chapter 7] for definitions. We follow the convention used e.g. in [4] of writing
sλ/µ(ρ) in lieu of ρ(sλ/µ).

In the case when u = v = 0, the weight W(~λ,~µ) vanishes unless µ(0) and µ(N) are
both equal to the empty partition ∅, and we recover the original Schur process of [13].
In the case when u = 1 and v = 0, we recover after an inessential change the pfaffian
Schur process of [4].

Of particular importance for applications is the case where the specializations are the
so-called α-, β- and γ- specializations. For ρ an α-specialization (i.e. a specialization in a
single variable), the quantity sλ/µ(ρ) is nonzero if and only if λ/µ is a horizontal strip
(which we write λ � µ for short). This kind of specialization is useful for applications
to lozenge tilings and plane partitions [13]. Similarly, for ρ a β-specialization, sλ/µ(ρ) is
nonzero if and only if λ/µ is a vertical strip (which we write λ �′ µ). By alternating
α- and β-specializations we obtain sequences in bijection with domino tilings such as
those of the Aztec diamond or plane overpartitions [6]. Finally, γ- (alias exponential)
specializations arise in applications to last passage percolation [9]. In all these cases, the
weight W(~λ,~µ) is typically nonnegative and, provided that the partition function (total
mass of the measure) is finite, we may normalize W to obtain an actual probability
distribution.

Outline. In this extended abstract, we present our fundamental theorem on the free
boundary Schur process, which is a general expression for its correlation functions. We
first discuss the partition function in Section 2 as a warm-up, before considering correla-
tion functions in Section 3. In Sections 4 and 5 we apply our results to study asymptotics
of respectively last passage percolation and plane partition models with a symmetry
coming from the Schur process with one free boundary, a special case of our main re-
sult. More details, applications and complete proofs will appear in the journal version
of this paper, in preparation.

2 Partition function

A first basic result concerning the free boundary Schur process is an expression for the
partition function Z, defined as the sum of the weights (1.2) over all sequences of the
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form (1.1). To write it down in general form, we make use of the following common
notations. Recall that the generating function H(ρ; t) = ∑n≥0 hn(ρ)tn, where hn is the
complete homogeneous symmetric function of degree n, determines the specialization ρ.
We use ρ ∪ ρ′ and sρ (s being a scalar) to denote the specializations defined by

H(ρ ∪ ρ′; t) := H(ρ; t)H(ρ′; t), H(sρ; t) := H(ρ; st). (2.1)

We also set
H(ρ; ρ′) := ∑

λ∈P
sλ(ρ)sλ(ρ

′), H̃(ρ) := ∑
λ∈P

sλ(ρ), (2.2)

where P denotes the set of all partitions.

Proposition 1. Assume |uv| < 1. The partition function of the free boundary Schur process is

Z = ∏
1≤k≤`≤N

H(ρ+k ; ρ−` ) ∏
n≥1

H̃(un−1vnρ+)H̃(unvn−1ρ−)H(u2nρ+; v2nρ−)
1− unvn , (2.3)

where ρ± =
⋃N

i=1 ρ±i .

This result was essentially proved in [6, Section 5.3], and we now recall briefly its
derivation in our current notations, as this will be useful for the next section. We consider
the infinite-dimensional Hilbert space B (bosonic Fock space) spanned by the orthonormal
basis |λ〉, λ ∈ P (here we make use of the bra-ket notation). For ρ a specialization, we
define the vertex operators Γ±(ρ) by

〈λ|Γ+(ρ)|µ〉 = 〈µ|Γ−(ρ)|λ〉 = sµ/λ(ρ), λ, µ ∈ P . (2.4)

Following [6, Section 5.3], we also introduce the free boundary states

|v〉 := ∑
λ∈P

v|λ||λ〉, 〈u| := ∑
λ∈P

u|λ|〈λ|, u, v ∈ C. (2.5)

Then, by the transfer-matrix method, the partition function can be rewritten as

Z = 〈u|Γ+(ρ
+
1 )Γ−(ρ

−
1 ) · · · Γ+(ρ

+
N)Γ−(ρ

−
N)|v〉. (2.6)

To evaluate this product, we make use of the following relations:

Γ+(ρ)Γ−(ρ′) = H(ρ; ρ′)Γ−(ρ′)Γ+(ρ), (2.7)
Γ±(ρ)Γ±(ρ′) = Γ±(ρ ∪ ρ′), (2.8)

Γ+(ρ)|v〉 = H̃(vρ)Γ−(v2ρ)|v〉, 〈u|Γ−(ρ) = H̃(uρ)Γ+(u2ρ)〈u|. (2.9)

(These relations are respectively tantamount to the Cauchy identity, the “branching rule”
and the Littlewood identity for Schur functions.)
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More precisely, we first “commute” in (2.6) the Γ+ to the right and the Γ− to the left
using (2.7) and (2.8), to yield Z = ∏1≤k≤`≤N H(ρ+k ; ρ−` ) · 〈u|Γ−(ρ−)Γ+(ρ+)|v〉. Next we
make use of the “reflection relations” (2.9) to write

〈u|Γ−(ρ−)Γ+(ρ
+)|v〉 = H̃(uρ−)H̃(vρ+)〈u|Γ+(u2ρ−)Γ−(v2ρ+)|v〉.

By iterating the same manipulations, we “bounce” the Γ’s back and forth on the bound-
aries and get extra H/H̃ factors at each commutation/reflection, the specializations ρ±

being multiplied by a factor u2 or v2 at each reflection. We end up with (2.3) by noting
that the Γ’s tend to the identity operator as the number of bounces tends to infinity, since
|uv| < 1.

3 Correlation functions

Following [13], we define the correlation functions of the free boundary Schur process as
the probabilities ρ(U) that the random point configuration

S(~λ,~µ) :=
{(

i, λj − j +
1
2

)
, 1 ≤ i ≤ N, j ≥ 1

}

contains a given set U, with U running over all finite subsets of Z×Z′, Z′ := Z + 1/2.
(Without loss of generality one can disregard the partition sequence ~µ.)

For the original Schur process (u = v = 0), the point process S(~λ,~µ) is known to
be determinantal [13], while for one free boundary (uv = 0) it is pfaffian [4]. For two
free boundaries (u, v generic), it is neither in general, but we shall see just below that
a closely related point process is pfaffian. The situation is reminiscent of the periodic
Schur process, studied by Borodin [3], which becomes determinantal after performing a
similar transformation.

Let t be an arbitrary complex parameter. The shift–mixed2 (free boundary Schur) process
of length N is a measure over the set of tuples (~λ,~µ, d) with (~λ,~µ) is a sequence of
partitions of the form (1.1) and d an integer, where to each such tuple we assign a
weight

Ŵ(~λ,~µ, d) := t2d(uv)2d2W(~λ,~µ). (3.1)

We readily see that d is “independent” of (~λ,~µ) and that the partition function of the
shift-mixed process reads Ẑ = θ3(t2; (uv)4)Z, with θ3(t; q) = ∑n∈Z tnqn2/2 a Jacobi theta
function. To (~λ,~µ, d) we associate the shift-mixed point configuration

S(~λ,~µ, d) := S(~λ,~µ) + (0, 2d) =
{(

i, λj − j +
1
2
+ 2d

)
, 1 ≤ i ≤ N, j ≥ 1

}

2This denomination is borrowed from Borodin [3].
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and we define the shift-mixed correlation function ρ̂(U) as the sum of the weights of all
tuples (~λ,~µ, d) whose associated point configuration contains the subset U ⊂ Z×Z′,
divided by the partition function Ẑ (when the weights are all real nonnegative, this is
just the probability that S(~λ,~µ, d) contains U).

The non shift-mixed process sits inside this process as the restriction to d = 0. In
particular, ρ(U) can be expressed as the coefficient of t0 in θ3(t2; (uv)4)ρ̂(U).

Theorem 2. Assume |uv| < 1 and that there exists an R ∈ (0, 1) such that for all specializations
ρ±s , 1 ≤ s ≤ N we have pm(ρ±s )/m ∈ O(Rm) as m→ ∞. Then for U = {(i1, k1), . . . , (in, kn)},
the n–point correlation function of the shift–mixed process is given by the following 2n × 2n
pfaffian

ρ̂(U) = pf[K(iα, kα; iβ, kβ)]1≤α<β≤2n

where K(i, k; i′, k′) is represented by the 2× 2 matrix kernel

K(i, k; i′, k′) = (Ka,b(i, k; i′, k′))1≤a,b≤2

given by

K1,1(i, k; i′, k′) =

∫

w

∫

z
F(i, z)F(i′, w) ·

((uv)2; (uv)2)2
∞θ(uv)2(w

z )θ3

(
( tzw

v2 )
2; (uv)4

)

(− v
z ,− v

w , uz, uw; uv)∞θ(uv)2(u2zw)(uv; uv)∞
· v2

tzk+ 1
2 wk′+ 3

2
dT,

K1,2(i, k; i′, k′) =
∫

w

∫

z

F(i, z)
F(i′, w)

·
((uv)2; (uv)2)2

∞θ(uv)2(u2zw)θ3
(
( tw

z )
2; (uv)4)

( v
z ,− v

w ,−uz, uw; uv)∞θ(uv)2(w
z )(uv; uv)∞

· wk′− 1
2

zk− 1
2

dT,

K2,1(i, k; i′, k′) =
∫

w

∫

z

F(i′, w)

F(i, z)
·
((uv)2; (uv)2)2

∞θ(uv)2(u2zw)θ3
(
( tw

z )
2; (uv)4)

( v
z ,− v

w ,−uz, uw; uv)∞θ(uv)2(w
z )(uv; uv)∞

· zk+ 1
2

wk′+ 1
2

dT,

K2,2(i, k; i′, k′) =

∫

w

∫

z

1
F(i, z)F(i′, w)

·
((uv)2; (uv)2)2

∞θ(uv)2(w
z )θ3

(
( tv2

zw )2; (uv)4
)

( v
z , v

w ,−uz,−uw; uv)∞θ(uv)2(u2zw)(uv; uv)∞
· v2tzk− 1

2 wk′− 3
2 dT,

where dT = dzdw
(2π
√
−1)2zw

, and where F, for i ∈N and z ∈ C, is defined by

F(i, z) =
H
(

ρ+
[1,i] ∪

[⋃
l≥0 u2(uv)2lρ−

]
∪
[⋃

l≥1(uv)2lρ+
]

; z
)

H
(

ρ−
[i,N]
∪
[⋃

l≥0 v2(uv)2lρ+
]
∪
[⋃

l≥1(uv)2lρ−
]

; z−1
) , (3.2)
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with ρ±
[a,b] =

⋃b
i=a ρ±i and ρ± = ρ±

[1,N]
. The contours in each of the four integrals are simple

positively oriented contours around 0 satisfying
∣∣ v

z

∣∣ < 1,
∣∣ v

w

∣∣ < 1, |uz| < 1, |uw| < 1; and
in the K1,2 and K2,1 case they in addition satisfy

∣∣w
z

∣∣ < 1. Here, θ3(t; q) = ∑n∈Z tnqn2/2,
(x; t)∞ = ∏i≥0(1− xti) is the t-Pochhammer symbol and θt(x) = (x; t)∞(t/x; t)∞.

There are some additional constraints on the contours coming from the specializa-
tions, all in terms of R, which are omitted here.

The remainder of this section is devoted to a sketch of the proof of Theorem 2, which
relies on the free fermion/infinite wedge formalism, see for instance [10, Chapter 14].
The notations that we use here are essentially those of [12, Appendix A] and [5].

We say that a subset S of Z′ is admissible if both S+ := S \Z′<0 and S− := Z′<0 \ S are
finite. There is a well–known bijection between P ×Z and the set S of such admissible
subsets, given by S(λ, c) = {λi − i + 1/2 + c, i ≥ 1}, λ ∈ P , c ∈ Z. The fermionic Fock
space, denoted F , is the infinite dimensional Hilbert space spanned by the orthonormal
basis |S〉, S ∈ S . For λ a partition and c an integer we introduce the shorthand notations
|λ, c〉 := |S(λ, c)〉, |λ〉 := |λ, 0〉 and |c〉 := |∅, c〉. The vector |0〉 is called the vacuum.

It appears that the bosonic Fock space B considered in Section 2 can be seen as a
subspace of F . Actually, we have the orthogonal decomposition F = ⊕c∈ZFc where
Fc ' B is the subspace spanned by the |λ, c〉, λ ∈ P . The vertex operators Γ±(ρ) act
naturally on F diagonally with respect to this decomposition, and the free boundary
states (2.5) are seen as elements of F0. For k ∈ Z′, we define the fermionic operators ψk
and ψ∗k by

ψk|S〉 =
{

0 if k ∈ S
(−1)j|S ∪ {k}〉 if k /∈ S

, ψ∗k |S〉 =
{
(−1)j|S \ {k}〉 if k ∈ S
0 if k /∈ S

where j = |S ∩Z′>k|. They satisfy the canonical anticommutation relations

{ψk, ψ∗`} = δk,`, {ψk, ψ`} = {ψ∗k , ψ∗`} = 0, k, ` ∈ Z′

where {a, b} := ab + ba, and obey ψk|0〉 = ψ∗−k|0〉 = 0 for k < 0. The generating series

ψ(z) = ∑
k∈Z′

ψkzk, ψ∗(w) = ∑
k∈Z′

ψ∗k w−k,

are known to satisfy

Γ±(ρ)ψ(z) = H(ρ; z±1)ψ(z)Γ±(ρ), Γ±(ρ)ψ∗(w) = H(ρ; w±1)−1ψ∗(w)Γ±(ρ).

Let U = {(i1, k1), . . . , (in, kn)} where 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ N and k1, . . . , kn ∈ Z′.
Using the above definitions and the transfer-matrix method as in Section 2, we see that
the correlation function ρ(U) can be written as

ρ(U) =
1
Z
〈u| · · · Γ+(ρ

+
i1
)ψk1ψ∗k1

Γ−(ρ−i1 ) · · · Γ+(ρ
+
in )ψkn ψ∗kn

Γ−(ρ−in ) · · · |v〉. (3.3)
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We can try to evaluate this expression along the same lines as in [13] but we lack a crucial
ingredient, namely Wick’s formula, which does not hold anymore in the presence of
general free boundary states. To fix this problem, we are led to introducing the extended
free boundary states defined by

|v, t〉 := eX(v,t)|0〉, 〈u, t| := 〈0|eX(ū,t̄)∗ , (3.4)

where X is defined by

X(v, t) := ∑
(k,`)∈Z′2

k>`

ψ̃k(v, t)ψ̃`(v, t), ψ̃i(v, t) :=

{
t1/2viψi for i ∈ Z′>0,
(−1)i+1/2t−1/2v−iψ∗i for i ∈ Z′<0.

Proposition 3. We have

|v, t〉 = ∑
(λ,c)∈P×2Z

tc/2v|λ|+c2/2|λ, c〉, 〈u, t| = ∑
(λ,c)∈P×2Z

tc/2u|λ|+c2/2〈λ, c|,

and hence |v〉 = Π0|v, t〉 and 〈u| = 〈u, t|Π0, where Π0 is the orthogonal projector onto F0.

Proof. Expand the exponential eX(v,t) as a series and notice that it involves a sum of
monomials ψ̃i1 · · · ψ̃i2r . Use the anticommutations to show that, by reordering the indices
i1 > · · · > i2r, each ordered monomial appears with coefficient 1. Observe that, by
multiplying by |0〉 on the right, we obtain a sum over all states |λ, c〉 with even c.

Combining Proposition 3 with (3.3), we find that the shift-mixed correlation function
reads

ρ̂(U) =
1
Ẑ
〈u, t| · · · Γ+(ρ

+
i1
)ψk1ψ∗k1

Γ−(ρ−i1 ) · · · Γ+(ρ
+
in )ψkn ψ∗kn

Γ−(ρ−in ) · · · |v, t〉. (3.5)

Now we have the previously missing ingredient:

Proposition 4 (Wick’s formula for extended free boundary states). Let Ψ be the vector
space spanned by the ψk and ψ∗k , k ∈ Z′. For φ1, . . . , φ2n ∈ Ψ, we have

〈u, t|φ1 · · · φ2n|v, t〉
〈u, t|v, t〉 = pf A

where A is the antisymmetric matrix defined by Aij = 〈u, t|φiφj|v, t〉/〈u, t|v, t〉 for i < j.

Using similar tricks as in the proof of Proposition 1 first and then Proposition 4
(whose proof is omitted here), we can show that the shift-mixed process is a Pfaffian
process with the correlation kernel K(i, k; i′, k′) equal to

 [zkwk′ ]F(i, z)F(i′, w)〈u, t|ψ(z)ψ(w)|v, t〉

[
zk

wk′

]
F(i,z)

F(i′,w)
〈u, t|ψ(z)ψ∗(w)|v, t〉[

wk′

zk

]
F(i′,w)
F(i,z) 〈u, t|ψ∗(z)ψ(w)|v, t〉

[
1

zkwk′

]
1

F(i,z)F(i′,w)
〈u, t|ψ∗(z)ψ∗(w)|v, t〉


 ,

where F is defined in (3.2). Computing the four expectations of the form 〈u, t|ψ(z)ψ(w)|v, t〉
appearing in the kernel we obtain Theorem 2.
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4 Last passage percolation

Last passage percolation (LPP) is a probabilistic model which can be seen as a particle
system (TASEP) (see e.g. [8]) or a stochastic growth model which belongs to the KPZ
universality class [7]. To define it, fix (1, 1) as starting point, and an endpoint P ∈ Z2.
A collection of points π(l) ∈ Z2, l = 0, . . . , s is an up–right path from (1, 1) to P if
π(0) = (1, 1), π(s) = P and π(l + 1)− π(l) ∈ {(1, 0), (0, 1)}. Attach now to each point
(i, j) ∈ Z2 a random waiting time ωi,j, the (ωi,j)i,j∈Z are independent and nonnegative.
The LPP time from (1, 1) to P is then the longest way to get from (1, 1) to P along an
up–right path, i.e. one takes the maximum over all up–right paths from (1, 1) to P and
sets

L(1,1)→P = max
π:(1,1)→P

∑
(i,j)∈π

ωi,j. (4.1)

One is interested in the behavior of L(1,1)→(N,N) as N → ∞, and expects laws of random
matrix theory (RMT) to appear in the limit, see Theorem 5. The link from LPP to the
free boundary Schur process comes from the fact that under the RSK bijection LPP times
become the length of the first part of random partitions, hence the LPP time (4.1) be-
comes the gap probability of a Schur process with a free boundary. When the (ωi,j)i,j∈Z

are geometric random variables as in (4.2), the correlation functions are given as pfaffi-
ans by Theorem 2. Then by general theory [9] the law of an LPP time becomes a series
(Fredholm pfaffian), see (4.3). To illustrate, consider the case of symmetric weights

ωj,i = ωi,j ∼





g(q) if i 6= j

g(α
√

q) if i = j
(4.2)

for q ∈ (0, 1) and α ∈ (0, 1/
√

q) and Prob(g(q) = k) = qk(1− q) for k ∈ N0. In this case
the approach outlined above leads to (Kα,N an explicit, antisymmetric kernel, s ∈N)

Prob(L(1,1)→(N,N) < s) =
∞

∑
n=0

(−1)n

n! ∑
x1>s−1/2

· · · ∑
xn>s−1/2

pf(Kα,N(xi, xj))i,j=1,...,n. (4.3)

More generally, we obtain a Fredholm pfaffian formula for (certain) multipoint distri-
butions of LPP. An alternate derivation follows from [4] Theorem 3.3. This is done in
[2], where the authors perform standard steepest descent analysis to study asymptotics
of the symmetric LPP model with exponential weights (extra care is needed in the GSE
case).

The formula (4.3) allows to do N → ∞ asymptotics, leading to the following theorem,
which was originally established using Riemann–Hilbert techniques in [1].



The free boundary Schur process and applications 9

Theorem 5. Consider the symmetric LPP time L(1,1)→(N,N) given by (4.1) and weights (4.2)

with α < 1 and let cq =
1−√q

q1/6(1+
√

q)1/3 . Then

lim
N→∞

Prob
(

L(1,1)→(N,N) ≤
2
√

q
1−√q

N + c−1
q sN1/3

)
= FGSE(s).

If α = 1, then

lim
N→∞

Prob
(

L(1,1)→(N,N) ≤
2
√

q
1−√q

N + c−1
q sN1/3

)
= FGOE(s).

Here FGSE, FGOE are the Tracy–Widom distributions from RMT, expressible through
Fredholm pfaffians [15]. One can also study a transitional regime where α = 1 −
vN−1/3, v ∈ R in which case one obtains a transitional distribution FGOE→GSE,v.

5 Plane partitions and plane overpartitions

Here we describe two models on plane partitions: symmetric plane partitions and plane
overpartitions. They are special cases of the free boundary Schur process with u = 0, v =
1 (which pins the left boundary at ∅).
Symmetric plane partitions. A free boundary plane partition of length N is an array
(πi,j)1≤j≤i≤N of non–negative integers satisfying the properties πi,j ≥ πi+1,j and πi,j ≥
πi,j+1 for all meaningful i, j. Its volume is the sum of its entries: |π| = ∑1≤j≤i≤N πi,j.
Such an object can be viewed as half of a symmetric plane partition with base in the square
N × N – an array (πi,j)1≤i,j≤N satisfying the above constraints plus the symmetry con-
straint πi,j = πj,i. An example of length 5 and volume 79 is depicted below.
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If a = 1, then

lim
N!•

Prob
✓

L(1,1)!(N,N) 
2
p

q
1 �p

q
N + c�1

q sN1/3
◆

= FGOE(s).

Here FGSE, FGOE are the Tracy–Widom distributions from RMT, expressible through
Fredholm pfaffians [15]. One can also study a transitional regime where a = 1 �
vN�1/3, v 2 R in which case one obtains a transitional distribution FGOE!GSE,v.

5 Plane partitions and plane overpartitions

Here we describe two models on plane partitions: symmetric plane partitions and plane
overpartitions. They are special cases of the free boundary Schur process with u = 0, v =
1 (which pins the left boundary at ∆).
Symmetric plane partitions. A free boundary plane partition of length N is an array
(pi,j)1jiN of non–negative integers satisfying the properties pi,j � pi+1,j and pi,j �
pi,j+1 for all meaningful i, j. Its volume is the sum of its entries: |p| = Â1jiN pi,j.
Such an object can be viewed as half of a symmetric plane partition with base in the square
N ⇥ N – an array (pi,j)1i,jN satisfying the above constraints plus the symmetry con-
straint pi,j = pj,i. An example of length 5 and volume 79 is depicted below.

6
7

3

9

5

2

9

7

3

1

10

8

6

2

1

For a fixed q 2 (0, 1), we study large free boundary plane partitions weighted accord-
ing to their volume Prob(p) µ q|p| in the limit q ! 1 and N ! •. Similarly as in [13],
for the right choice of specializations, this can be seen as a free boundary Schur process
on the sequence l

(N�i)
k = (pN�i+k,k)k>0, i = 1, . . . , N and l(N) := ∆.

Theorem 2 implies that this process ∆ � l(N�1) � · · · � l(0) is pfaffian and its

For a fixed q ∈ (0, 1), we study large free boundary plane partitions weighted accord-
ing to their volume Prob(π) ∝ q|π| in the limit q → 1 and N → ∞. Similarly as in [13],
for the right choice of specializations, this can be seen as a free boundary Schur process
on the sequence λ

(N−i)
k = (πN−i+k,k)k>0, i = 1, . . . , N and λ(N) := ∅.
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Theorem 2 implies that this process ∅ ≺ λ(N−1) ≺ · · · ≺ λ(0) is pfaffian and its
correlation kernel (via λ(i) 7→ {k(i)s = λ

(i)
s − s + 1

2}) is given by

K1,1(i, k; i′, k′) =
∫

z

∫

w
F(N − i, z)F(N − i′, w)

1
zkwk′

√
zw(z− w)

(z + 1)(w + 1)(zw− 1)
dT,

K1,2(i, k; i′, k′) = −K1,2(i′, k′; i, k) =
∫

z

∫

w

F(N − i, z)
F(N − i′, w)

wk′

zk

√
zw(zw− 1)

(z + 1)(w− 1)(z− w)
dT,

K2,2(i, k; i′, k′) =
∫

z

∫

w

1
F(N − i, z)F(N − i′, w)

zkwk′
√

zw(z− w)

(z− 1)(w− 1)(zw− 1)
dT,

where F(N − i, z) := (q/z; q)N/(qi+1z; q)N−i and the contours are 1 + ε > |z| > |w| > 1
for ε small in the case i ≥ i′.

We asymptotically analyze the kernel using the steepest descent method much like
in [13]. It boils down to analyzing the critical points of the function F in the limit.

Let us define the following curve in the macroscopic (x, y) plane:

C = {(x, y) ∈ R2|x > 0, (exp(−y/2))2 = (1± exp(−x/2))2}.

With X = exp(−x), Y = exp(−y), in the (
√

X,
√

Y) coordinate system C is half the
boundary of the amoeba of the polynomial P(Z, W) = 1 + Z + W. C cuts the half plane
x > 0 into three connected components, which we call Dt (y >> 0), Db (y << 0) and
Dm for region in the middle (“between” the two path–connected components of C).

Let x > 0, y ∈ R be fixed. As r → +0, for q = exp(−r), we consider random
free boundary plane partitions, volume weighted, and look at microscopic coordinates
(i, k) approaching (x, y) macroscopically: (ri → x, rk → y) (in terms of lozenge heights
rh→ y− x/2). We can prove the following.

Theorem 6. As r → +0: the probability that there is a horizontal lozenge at position (i, k− i/2)
decreases exponentially to 0 if (x, y) ∈ Dt; it increases exponentially to 1 if (x, y) ∈ Db; it is
finite and strictly in between 0 and 1 if (x, y) is inside Dm.

The liquid region Dm and frozen regions Dt and Db are the same for both large sym-
metric and large non–symmetric plane partitions. This is illustrated with two simulated
random plane partitions in the figure below. Shown below are a random plane partition
for q = 0.953 (left) and a random symmetric one for q2 (right). The squaring of q in the
symmetric case is necessary to obtain the same asymptotic drawing scale.
Plane overpartitions. A plane overpartition is a plane partition where in each row the
last occurrence of an integer can be overlined or not and all the other occurrences of
this integer are not overlined, and in each column the first occurrence of an integer can
be overlined or not and all the other occurrences of this integer are overlined. A plane
overpartition with the largest entry at most N and shape λ can be recorded as a sequence
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of partitions ∅ ≺ λ(1) ≺′ λ(2) ≺ · · · ≺ λ(2n−1) ≺′ λ(2N) = λ where λ(i) is the partition
whose shape is formed by all fillings greater than N − i/2, where the convention is that
k = k− 1/2 (see e.g., [6]). An example of a plane overpartition is shown above.

1
3
3
4

1
3
4

3
3

2
2 2

As before we study the asymptotics of the qvolume measure on plane overpartitions
when q → 1 and N → ∞. In this case the liquid region, as before called Dm, under an
appropriate change of coordinates, turns out to be half of the amoeba of the polynomial
−1 + Z + W + ZW, is

Dm = {(τ, χ)|τ ∈ R, χ ∈ R≥0,−1 ≤ f (τ, χ) ≤ 1} ,

where f (τ, χ) = (eχ + 1)(eτ − 1)/(2eχ/2(eτ + 1)).
In the limit, inside the liquid region Dm the process becomes determinantal. Its

kernel can be written in terms of the incomplete beta–hypergeometric kernel which for
(τ, χ) ∈ Dm, t, x, y ∈ Z is defined with

B±(τ, χ, t, x, y) =
1

2πi

∫

C±(e−χ/2,θc(τ,χ))

1
zt+1

(1− z)x

(1 + z)y dz,

where θc(τ, χ) = arccos( f (τ, χ)) and C+(R, θ)(C−(R, θ)) is the counterclockwise (clock-
wise) oriented arc on |z| = R from Re−iθ to Reiθ for R > 0 and 0 ≤ θ ≤ π.

In the limit on the free boundary edge the process remains to be pfaffian and its
correlation kernel is given also in terms of the kernel B±.
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